An Architecture for Recycling Intermediates in a
Column-store

MILENA G. IVANOVA

MARTIN L. KERSTEN

NIELS J. NES

ROMULO A.P. GONCALVES
Centrum Wiskunde & Informatica

Automatic recycling intermediate results to improve both query response time and throughput
is a grand challenge for state-of-the-art databases. Tuples are loaded and streamed through a
tuple-at-a-time processing pipeline, avoiding materialisation of intermediates as much as possible.
This limits the opportunities for reuse of overlapping computations to DBA-defined materialised
views and function/result cache tuning.

In contrast, the operator-at-a-time execution paradigm produces fully materialised results in
each step of the query plan. To avoid resource contention, these intermediates are evicted as soon
as possible.

In this paper we study an architecture that harvests the by-products of the operator-at-a-time
paradigm in a column store system using a lightweight mechanism, the recycler. The key challenge
then becomes selection of the policies to admit intermediates to the resource pool, their retention
period, and the eviction strategy when facing resource limitations.

The proposed recycling architecture has been implemented in an open-source system. An
experimental analysis against the TPC-H ad-hoc decision support benchmark and a complex, real-
world application (SkyServer) demonstrates its effectiveness in terms of self-organising behaviour
and its significant performance gains. The results indicate the potentials of recycling intermediates
and charts a route for further development of database kernels.

Categories and Subject Descriptors: H.2.4 [Database Management|: Systems—query process-
ng

General Terms: Design, Performance, Management

Additional Key Words and Phrases: Caching, Database kernels, Column-stores

1. INTRODUCTION

Query optimization and processing in off-the-shelf database systems is often still
focused on individual queries. Queries are optimised in isolation using statistics

Authors’ address: Centrum Wiskunde & Informatica (CWI), Science Park 123, 1098 XG Amster-
dam, The Netherlands. Email:{milena,mk,niels,goncalve}@cwi.nl.

Disclaimer. This is a preliminary release of an article accepted by ACM Transactions on
Database Systems. The definitive version is currently in production at ACM and, when released,
will supersede this version.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 2010 ACM 0362-5915/2010/0300-0001 $5.00

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010, Pages 1-41.

2 . Milena Ivanova et al.

gathered, analytical models, and heuristic rewrite rules, and run against a kernel
regardless opportunities offered by concurrent or previous invocations.

This approach is far from optimal and two directions to improve upon this situ-
ation are being actively explored: materialised views and reuse of (partial) results.
Both depend and interact heavily with the underlying architecture, its execution
paradigm and opportunities for optimisers to exploit transient information.

The state-of-the-art commercial systems use a tuple-at-a-time pipelined execu-
tion model which avoids the overhead of materialising intermediates [Graefe 1994].
However, this paradigm also limits the opportunities for shared and/or reused com-
putations. It requires detection of overlapping query expression trees and temporal
alignment of their data flows. One way to deal with this architectural limita-
tion is to use materialised views or function/query result set caches (Oracle, DB2,
SQLServer). Materialised views have been extensively researched in recent years
[Mistry et al. 2001; Goldstein and Larson 2001; Zhou et al. 2007a]. They represent
common sub-queries, whose materialisation improves subsequent processing times.
The view management component of an optimiser takes them into account while
exploring the space of alternative execution plans. Typically, a database adminis-
trator supported by workload analysers determines which portions to materialise
[Agrawal et al. 2000; Bruno and Chaudhuri 2007]. Reuse of partial results is also
useful in applications with parametrised queries [Zhou et al. 2007a; Luo 2007; Phan
and Li 2008].

The operator-at-a-time execution paradigm, where complete intermediates are a
by-product of every step in the query execution plan, calls for an in-depth analysis
of its reuse potentials. We believe that this (off-beat) approach, in terms of resource
requirements during query execution, can be exploited to speed up query streams
significantly in a self-organising way. In other words, it pays off to recycle interme-
diate results of relational algebra operations instead of blindly garbage collecting
them or avoiding them altogether.

Recycling intermediate results improves response time and throughput when their
creation cost and management cost can be kept under control. In the operator-at-
a-time setting, only the second cost factor is relevant, because the creation cost is
always taken by the execution paradigm.

Recycling is a refinement of operator caching, a technique known for a long time.
However, the inter-dependencies between the relational operators in a query plan
allow for a variety of policies to capitalise on the algebra semantics. In contrast to
materialised views, a resource pool of recycled intermediate results adapts continu-
ously to the workload without DBA intervention and incurs minimal start-up and
maintenance costs.

This hypothesis is tested in the context of the operator-at-a-time database system
MonetDB [MonetDB 2010]. Its architecture differs in a fundamental way from state-
of-the-art (commercial) systems. In addition to a different execution paradigm, it is
based on a canonical implementation of a column store. This means that recycling
can be focused on horizontal fragments of base columns or their derivations. This
greatly simplifies fragmentation management and predicate subsumption analysis
to find matching operations.

The realisation of our idea requires a modification in the MonetDB query ex-

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

An Architecture for Recycling Intermediates in a Column-store : 3

ecution engine. Therefore, its abstract machine interpreter is hooked up with a
recycler optimiser and run-time module. The optimiser marks operations of in-
terest for harvesting. The run-time support uses this advice to manage a pool
of partial results. It avoids re-computation of common sub-queries by extracting
readily available results from the pool.

The key issue in the design of the recycler is to identify efficient and effective
policies to use and manage the resource pool. It encompasses decisions in three
dimensions: instruction matching, investment cost versus savings, and pool admin-
istration maintenance. For each instruction to be executed the recycler performs
a matching process, i.e., it searches for a possible reusable relational algebra oper-
ation in the recycle pool. For each operation executed the recycler decides if it is
beneficial to keep the result. Finally, to prevent the pool of intermediates becom-
ing a resource bottleneck itself, operations with low potential for reuse should be
cleaned from the pool to reduce the memory usage and the search time.

Cleaning of low beneficial intermediates to accommodate new instructions grad-
ually adapts the content of the recycle pool to workload changes. We propose and
evaluate several eviction policies selecting instructions for eviction. These include
traditional approaches, such as LRU, and cost-based policies based on plan seman-
tics. A distinguishing characteristic of all policies is that they respect and exploit
the semantic relationships amongst the operations executed.

We consider the recycler architecture especially suitable for applications with
prevailing read-only workload and relatively expensive processing, such as data
analytics and decision support. Low data volatility means that invalidation of
intermediates is not needed too often. Expensive processing due to computational
complexity and/or large data volumes creates weighty intermediates that are worth
keeping and beneficial for reuse.

We describe the design space to accommodate volatile environments in Section 6.
It relies on delta-based relational update processing, an area well covered in the
database research area.

The recycler is evaluated extensively in two experimental settings. First, we focus
on the TPC-H decision support benchmark [Transaction Processing Performance
Council 2008]. Despite the fact that this benchmark consists of rather orthogonal
queries, it illustrates the internal mechanisms of the recycler and its performance
efficiency in a relatively controlled manner. The benchmark is used to analyse the
baseline performance and the impact of different design choices.

Next, we conduct experiments with the SkyServer application [SkyServer 2008];
a sizable and complex scientific database application, whose 200 page sized SQL
schema includes views, procedure abstractions, and a well chosen set of indices. The
experiments with a 100 GB database and samples of the workload observed show
that a tenfold improvement is achieved by our approach by keeping only partial
replicas over persistent tables. This is remarkable, because the database design of
the SkyServer already underwent a significant DBA design exercise [Szalay et al.
2002]. In addition, we use the SkyServer application to prepare micro-benchmarks
for evaluation of the subsumption algorithm.

The results obtained in the context of MonetDB are, in principle, applicable in a
tuple-at-a-time execution paradigm [Graefe 1994]. Tt calls for selection of operators

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

4 . Milena Ivanova et al.

in the execution plan that mirror the results to the resource pool as well as the next
operator in the plan. Judicious use of the technique may complement the prevalent
technique based on workload analysers and (partially) materialised views. However,
experimental proofs of this hypothesis should come from their code owners.

The remainder of the paper is organised as follows. Section 2 provides an overview
of the MonetDB architecture and its abstract relational algebra engine. Section 3
describes the overall recycler architecture and discusses different design alterna-
tives. The policies for management of the resource pool are presented in Section 4.
Subsumption of instructions is presented in Section 5. Section 6 describes the is-
sues arising when recycling volatile databases and charts the landscape of solutions.
The experimental evaluations are presented in Section 7 and Section 8. Section 9
describes the related work and Section 10 summarises our findings.

2. BACKGROUND

In this section we give a summary of the MonetDB architecture! focusing on the
processing model for SQL.

2.1 Architecture

MonetDB is a modern fully functional column-store database system, designed in
the late 90’s with a proven track record in various fields [Bonez et al. 2008; Zukowski
et al. 2006; Cornacchia et al. 2008]. To make this paper self-contained we re-iterate
the system’s basic building blocks, its architecture, and its execution model.

MonetDB stores data column-wise in binary relational structures called Binary
Association Tables (BATs). A BAT represents a mapping from an OID to a base
type value ANY, i.e., it is a binary table with schema BAT(head:01D, tail:ANY).
This storage structure is equivalent to large, memory-mapped dense arrays. It is
complemented with hash-structures for fast key look-up. Associated BAT properties
are used to steer selection of more efficient implementations, e.g., sorted columns
lead to sort-merge join operations.

The software stack of MonetDB consists of three layers. The bottom layer is
formed by a library that implements a binary-column storage engine, including a
rich set of highly optimised relational operators. This engine is programmed using
the MonetDB Assembly Language(MAL), which provides a convenient abstraction
over the kernel libraries, and a concise programming model for plan generation
and execution. Powerful tools create an environment where debugging database
optimisers has become feasible.

The next layer is formed by a series of targeted query optimisers. They take
a MAL program and transform it into an improved one. Two dozen optimiser
modules are included in the distribution, ranging from a simple constant expression
evaluator to a complex dynamic plan choice generator, such as a runtime-driven
memo-plan query optimiser.

The top layer consists of front-end compilers (SQL, XQuery), that translate high-
level queries into MAL plans. The compilers include optimisers to exploit language
semantics and heuristic rewrite rules that do not depend on physical properties
or algorithmic cost. MonetDB is an easy, accessible toolkit for embarking upon

IThe system can be downloaded from http://monetdb.cwi.nl

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

An Architecture for Recycling Intermediates in a Column-store : 5

s1.2(A0,A1,A2,A3)

function user.s1_2(A0:date,Al:date,A2:int,A3:str):void;
X5 := sql.bind("sys"," lineitem”,” |_returnflag” ,0);
X11 := algebra.uselect(X5,A3);
X14 := algebra.markT(X11,0Q@0);
X15 := bat.reverse(X14);
X16 := sql.bindldxbat("sys"," lineitem”," li_fkey");
X18 := algebra.join(X15,X16);
X19 := sql.bind("sys"," orders” " o_orderdate”,0);
X25 := mtime.addmonths(A1,A2);
X26 := algebra.select(X19,A0,X25,true,false);
X30 := algebra.markT(X26,0@0);
X31 := bat.reverse(X30);
X32 := sql.bind("sys",” orders”,” o_orderkey” ,0);
X34 := bat.mirror(X32);
X35 := algebra.join(X31,X34);
X36 := bat.reverse(X35);
X37 := algebra.join(X18,X36);
X38 := bat.reverse(X37);
X40 := algebra.markT(X38,0Q@0);
X41 := bat.reverse(X40);
X45 := algebra.join(X31,X32);
X46 := algebra.join(X41,X45);
X49 := algebra.selectNotNil(X46);
X50 := bat.reverse(X49);
X51 := algebra.kunique(X50);
X52 := bat.reverse(X51);
X53 := aggr.count(X52);
sql.exportValue(1,"sys.orders”,” L1",” wrd",32,0,6,X53);
end s1_2;

exportValue(X53)

Fig. 1. MAL plan of the example query Fig. 2. Execution plan marked
by the recycler optimiser

database kernel innovations and domain specific optimisations as studied in this
paper.

2.2 Query Processing

In this work we focus on the SQL front-end. All SQL queries are translated into
a parametrised representation, called a query template, by factoring out all literal
constants. This means that a query execution plan in MonetDB is not optimal in
terms of a cost model, because range selectivities do not have a strong influence on
the plan structure. Template-based query optimisation in MonetDB aligns well with
the idea of recycling, since it provides more possibilities for reuse among template
instances with different parameters.

Plan generation exploits both well-known heuristic rewrite rules, e.g., selection
push-down, and foreign key properties, i.e., join indices. The query templates are
kept in a query cache. Figure 1 illustrates the MAL query template produced for
an example query over the TPC-H database:

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

6 . Milena Ivanova et al.

select count(distinct o_orderkey)

from orders, lineitem

where 1_orderkey = o_orderkey
and o_orderdate >= date ’1996-07-01’
and o_orderdate < date ’1996-07-01’ + interval ’3’ month
and 1_returnflag = ’R’;

This query has been translated by the SQL compiler into a MAL function under
the assumption that the table is accessed in read only mode. For the general case,
where concurrent transactions may register updates to the underlying tables, the
MAL plan grows to several hundreds of such instructions. The function body is a
linear representation of the query plan. It may appear complex at first sight, but
this is mostly a consequence of the canonical representation of the binary relational
algebra being supported. The plan is composed of three abstract parts: instructions
for catalogue and persistent data access, binary relational algebra instructions, and
construction of an SQL query result set.

The data access is implemented by the bind instruction and its variations. It
localises the persistent BATs for ORDERS (x19,X32) and LINEITEM tables (X5) in the
SQL catalogue. Since the query joins the two tables on the foreign key constraint
from LINEITEM to ORDERS, a supporting join index is accessed (x16) instead of
accessing the persistent BAT for the L_ORDERKEY column in the LINEITEM table.

The major part of the plan consists of binary relational algebra instructions.
There are several versions of select and join that implement numerous algorithms
for predicate-based filtering and joins.

In addition, there is a set of MAL-specific instructions with auxiliary function-
ality. For example, markT creates a BAT with the same head as its argument and
a fresh dense sequence of unique OIDs in the tail. The typical usage is to create
OIDs for the query or partial result tuples. The reverse instruction swaps the places
of the head and the tail of a BAT. The mirror returns an image of a BAT where
the tail column is a mirror of the head. These auxiliary instructions are zero cost
operations without data copying. They only materialise a new viewpoint over the
underlying data structures?.

Finally, the exportValue ships the computed result set to the SQL front-end.

The SQL query template is processed by a chain of optimisers before taking it into
execution. The default optimisers range from simple constant expression evaluation,
preparation for multi-core parallel processing, to garbage collection reducing the
memory footprint. The design of MAL simplifies instruction pattern analysis and
exploitation of data flow relations.

Figure 2 shows the MAL plan as a directed graph with instructions at the nodes,
and edges representing instruction dependencies. We can distinguish several threads
of execution, each starting with binding a persistent column, reducing it using a
filter expression or joining it with another column, until the tuples are transformed
into result attributes. On multi-core systems the threads are executed in parallel.

The final MAL program is interpreted in a linear fashion by the MonetDB ker-
nel. The overhead of the interpreter is kept low, well below one microsecond per

2More detail on the MAL instructions can be found on http://monetdb.cwi.nl

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

An Architecture for Recycling Intermediates in a Column-store : 7

instruction. The default interpreter is fully equipped with run-time debugging and
performance monitoring. However, if performance measurements are not needed, a
fast-path interpreter is called.

2.3 Materialisation

A discriminating feature of MonetDB is its reliance on full materialisation of all
intermediate results. That is, every relational operator takes one or more BATS
and produces a new set of BATs. All but a few of the kernel libraries exhibit
this functional behaviour. For instance, in the example in Figure 1 the result of
the selection operation over the L_.RETURNFLAG attribute is materialised in a BAT
assigned to the variable X11.

Do not be misled to overestimate the resource cost related to materialisation,
because the MonetDB kernel extensively uses data structure sharing to minimise
the need for taking a complete copy. Many instructions are primarily aimed at
administration of the properties or viewpoints. As explained above, instructions
such as mirror, markT, and reverse, are zero cost operations that only materialise
a new viewpoint over the underlying structures. Even a range select operation may
become a cheap operation when the underlying BAT happens to be ordered. Then
a BAT view is returned, which only keeps a reference to the underlying BAT and the
range of qualifying tuples.

The materialisation of intermediates is usually considered an overhead that is
avoided in the pipelined execution paradigm. However, full materialisation benefits
from fast, cache-conscious algorithms and the price of RAM. It also makes the
intermediates readily available for reuse by queries with overlapping expressions, as
we will show in the remainder of this paper.

3. RECYCLER ARCHITECTURE

In this section we describe in detail the recycler optimiser and run-time module for
the MonetDB system. The recycler is designed with several boundary conditions
in mind. First, and foremost, it is targeted to SQL queries over a predominantly
read-only database. The query plans are produced in isolation, i.e., without knowl-
edge of the workload itself, using common relational query optimiser techniques.
Intermediate results from individual MAL operations laying around from previous
queries are not taken into account at optimization time. Instead, matching of in-
structions, eventually followed by a decision to reuse an intermediate, is performed
at run time. This just-in-time approach appears to be more flexible. In this way the
optimised query templates are independent of the intermediates currently available
and are readily reusable.

3.1 Marking Instructions for Recycling

The first design issue is to identify instructions of interest to the recycler. This
is performed during query optimization by the recycler optimiser. It inspects the
MAL plan and marks instructions and variables eligible for control by the recycler.
An instruction becomes subject to recycler monitoring if all arguments are either
constants or variables that are already designated as recycling candidates.

Many MAL instructions are of no interest to the recycler. For example, cheap
operations, such as simple arithmetic expressions, should not be recycled. The over-

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

8 . Milena Ivanova et al.

head of their administration outweighs the expected gain. In addition, a symbolic
expression evaluator already removes side-effect free expressions involving constant
scalar arguments.

All instructions with side effects should be handled with caution. Updates are not
candidates for recycling, but they affect the content of the pool of intermediates.
Every time a BAT is updated, any copy, or derivation of it retained in the pool should
be invalidated or synchronised. Therefore, the update volatility puts a boundary on
the effectiveness of recycling. We consider this problem in more detail in Section 6.

Since processing an SQL query starts with binding variables to persistent columns
using catalogue names, the net effect is that the recycler optimiser marks operator
threads starting with access to these columns and propagates the property through
the query plan as far as possible. Typically, the threads involve selections, joins
and other primary relational operations.

Figure 2 shows the execution plan of the example query with instruction de-
pendencies. The majority of these instructions are marked by the optimiser for
monitoring, depicted as shaded nodes in the graph. The dark coloured nodes are
independent from the query template parameters and reused upon next invocation
of the same template with different parameters. The light coloured part depends
on the parameters and is not reused unless the parameter values match or allow for
subsumption.

The position of the recycler optimiser in the chain of MonetDB optimisers requires
some care. Optimisers are modules glued together in a pipeline that transform the
MAL programs. Components at the start of the pipeline typically view the MAL
program as a linear representation of a declarative query plan, which allows for ease
of re-ordering. Modules along the pipeline will gradually inject execution specific
properties, e.g., parallel execution guidelines, which frame the execution threads,
and, thereby, limit the opportunities for re-arrangement without clear knowledge
of plan run-time properties.

The SQL compiler comes with a default chain of optimisers. Evidently, recycling
should be performed before we inject garbage collection statements to free up re-
sources. However, it should not be applied too early in the chain either. Optimisers
for in-lining of SQL (scalar) functions, evaluation of constant expressions, symbolic
evaluation to remove empty partial results, and dead code elimination should be
called first.

3.2 The Recycle Pool

We refer to the system buffer for storing intermediates as recycle pool (RP). It is
internally represented as a MAL program block as well, which simplifies its man-
agement, inspection and debugging. The recycle pool is filled with the instructions
captured, and their arguments and results are stored as constants in the block’s
symbol table. The instructions are accompanied by execution and reuse statistics
such as the CPU time to compute, the sizes of the operands and result, and the
number and the type of reuses. In the example RP shown in Table I we use the
following naming conventions for the entries in the symbol table: the parameters
of the query template have names starting with A, the variable names start with
X, and the constant names begin with TMP.

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

An Architecture for Recycling Intermediates in a Column-store : 9

Symbol Table
Name l Value l Data type l #Tuples
X19 642 :bat[:0id,:date]
TMP1 | "sys” istr
TMP2 | "orders” istr
TMP3 | "o_orderdate” | :str
TMP4 | O lint
X26 1222 :bat[:0id,:date] 57768
A0 1996-07-01 :date
X25 1996-10-01 :date
TMP5 | 1 :bit
X142 1527 :bat[:oid,:date] | 228626
A5 1996-01-01 :date
X134 1997-01-01 :date

X19 := sql.bind("sys"," orders”," o_orderdate” ,0)
X26 := algebra.select(X19,A0,X25,true,false)

X142 := algebra.select(X19,A5,X134 true,false)
Table I. Recycle Pool

The content of the recycle pool is managed through a combination of policies.
The admission policy determines which of the monitored instructions should be
added to the pool. The eviction policy decides which entries to evict in order to
make room for new instructions. It is used to meet the resource limitations, such
as the total memory used, and to adapt the content of the pool to the recent
workload. Entries may also be evicted from the pool when update statements
invalidate intermediates derived from the modified persistent columns. The details
of the admission and eviction policies are given in Section 4.

A separate policy is to decide on the memory hierarchy impact. For large main
memories and relatively small intermediates, a portion of memory for recycling can
be shared with main stream processing. Alternatively, the recycle pool can consume
all slack resources on the hard disks (SSD) provided write/read cost are significantly
less than reconstruction of the intermediate. In the remainder of this paper we limit
the size of the recycle pool to a fraction of main memory and let the underlying
operating system manage it through its memory mapped file functionality.

3.3 The Recycler Run-time Support

The run-time support of the recycler extends the interpreter of MAL query plans.
If an instruction is marked for recycling, it is wrapped with two recycler operations:
recycleEntry() and recycle Exit(), shown in Algorithm 1.

The purpose of the recycle Entry() operation (lines 9-17) is to search the recycle
pool for a matching instruction and reuse it, if possible, instead of computing the
instruction result. Since all arguments are known at run time, matching boils down
to comparing instruction types and argument values. It consists of two phases:

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

10 . Milena Ivanova et al.

Algorithm 1 Recycler Run-time Support

1: Input: MAL instruction

2: Global variable to recycle pool RP

3: if marked(I) then > I is marked for recycling
4 if —recycleEntry(I) then

5: execute [

6 RECYCLEEXIT(])

7: else > Regular execution without recycling
8 execute [

9: function RECYCLEENTRY (])
10: M — match(I)
11: if M then > Found matching intermediate
12: retrieve M to the execution stack
13: update statistics for M
14: return true
15: else
16: return false

17: end function
18: procedure RECYCLEEXIT(I)

19: if admission(l) then > Admission policy decides to keep 1
20: if resSize(I) > freeSpace(RP) then

21: CLEANCACHE(resSize(I))

22: add result of I to RP

23: end procedure

looking for an exact match and looking for super-set instructions whose results
contain the result of the planned one. The reuse of an exact match is straightfor-
ward. The result is already available in the pool. It is brought to the execution
stack and the wrapped instruction is skipped without execution. If no exact match
exists, the recycler looks for subsuming instructions. Once found, it modifies the
instruction for a more efficient execution. We describe the details of the subsumed
execution in Section 5.

If neither an exact match instruction is found, nor subsumption is possible, the
instruction is executed normally. Then the recycle Exit() procedure (lines 18-23 of
Algorithm 1) arranges for storing the result of the instruction into the recycle pool.

3.4 Design Alternatives of Run-time Matching

The recycler is charged with the task to both capture and reuse intermediates at
run time. Therefore, in its design we aimed for a very light-weight implementation
with minimal overhead since it is potentially performed for each interpreted M AL
instruction. Several matching strategies can be considered.

Alternative 1: bottom-up sequence matching. Instructions are matched syntac-
tically one-at-a-time, which through interpretation leads to bottom-up matching
of evaluation plans. Matching of an instruction pair comprises comparing of their
type, followed by comparing the number and value of its arguments. Note that

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

An Architecture for Recycling Intermediates in a Column-store : 11

value comparison is possible at run time. This approach requires the least intrusive
modification of the execution engine with a negligible overhead (< 1 microsecond).

However, it also limits the intermediates cache management to properly respect
instruction dependencies. In particular, all prefix-instructions producing interme-
diates that are arguments of a given instruction A have to be kept in the pool
and matched in order to enable successful matching of A. In fact, the lineage of
an instruction A is kept by keeping the prefix-instructions. This requirement has
associated storage costs and may affect the recycle pool usage and efficiency.

The storage overhead of prefix-instructions should not be overestimated. Many
instruction types, e.g., reverse and mark, materialise only alternative viewpoints
(i.e., metadata) over the data. They lead to minor adjustments and auxiliary
information in the BAT run-time administration.

Alternative 2: top-down sequence matching. This alternative uses a more so-
phisticated lineage mechanism that allows matching of instructions independently
of whether their prefix-instructions are kept in the recycle pool. The intermedi-
ates are annotated with lineage records with meta-information about the source
columns and the operations performed over them. This facilitates a more restric-
tive admission scheme to the recycle pool. Only worthy instructions are kept. Such
a restrictive admission scheme may reduce the storage needs of the recycle pool,
especially for prefix-instructions with simple computations producing large inter-
mediates.

The top-down matching strategy requires a more substantial change in the ex-
ecution engine, namely the addition of a top-down evaluation of the query plan.
The increased complexity of the matching mechanism can have a negative effect on
its run-time performance.

Alternative 3: optimistic sequence matching. Similarly to the bottom-up se-
quence matching, all prefix-instructions in a path are kept, but the result data sets
are stored selectively. The matching proceeds bottom-up with a special treatment
of the 'phony’ intermediates. If an instruction A is matched against a phony inter-
mediate, the matching is optimistically considered successful. When a dependent
instruction B is reached, there are two possibilities: either B is successfully matched
and an intermediate is reused, in which case the execution of A will be skipped, or
B cannot be reused, in which case the interpreter backtracks and executes both A
and B.

Similarly to top-down matching, the optimistic matching requires some changes
in the execution engine: the interpreter needs to be extended with backtrack func-
tionality, and instruction matching has to take phony arguments into account. The
last two approaches need cache admission algorithms to select intermediates for
caching.

The precise trade-offs of all approaches in terms of complexity, performance,
missed opportunities, and storage needs require much more in-depth investigation.
Preliminary studies hint at a strong trade-off dependency on the workload charac-
teristics, that is on factors such as the degree of partial overlaps (e.g., prefix and
subsumption reuse), the ratio of aggregation operators processing large arguments
and producing small intermediates, etc.

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

12 . Milena Ivanova et al.

4. RECYCLE POOL MAINTENANCE

The goal for minimal run time overhead determined our preference to alternative 1:
bottom-up sequence matching. Keeping all intermediates in a thread of execution
allows for a prefix of an existing path to be reused by another query. This design
choice impacts both the admission and eviction policies for recycle pool mainte-
nance.

4.1 Recycle Pool: a Cache with Lineage

Caching is a technique used since the dawn of operating systems to manage their
files, and of database systems to manage their page buffer pool. These techniques
look at individual objects and mostly ignore their content. The recycler technique
introduced here, however, is strongly focused on the semantics and history of all
objects being managed. Matching instructions in the recycler pool calls for com-
parison of all arguments for validity. Since some arguments are results of earlier
instructions, the bottom-up sequence matching depends on instruction dependen-
cies and the way the admission and eviction policies treat them.

To illustrate consider a sequence of two instructions, (A; B), where the interme-
diate result of A is an argument of B. If only the result of B is kept in the pool,
while the result of A is discarded, we would miss an opportunity for reuse. For,
if the sequence (A; B) is computed again, the occurrence of instruction A will be
recomputed producing an intermediate object, possibly different from the one used
as an argument of the kept copy of instruction B. A comparison of the new object
value against all objects kept in the pool would be prohibitively expensive. It thus
leads to unsuccessfully matching instruction B and the inability to use the result
that was kept in the pool. Instruction B would also be re-evaluated and, thereby,
pollute the recycle pool even further.

Therefore, preserving instruction lineage by keeping all prefix instructions is cru-
cial for successful bottom-up sequence matching and effective recycling. This means
that both the admission and eviction policies have to respect instruction dependen-
cies and keep whole threads of execution intact.

4.2 Admission Policies

The recycleExit() operation of the recycler is called only if the instruction marked

for recycling has indeed been executed. It uses the admission policy to decide about

storing the result in the pool. In order to keep the result, a copy of the instruction

together with its arguments, results and execution statistics are stored in the recycle

pool and thus made available for reuse by subsequent queries. In the presence of

limited resources, a recycler routine is called to make room for new instructions.
The recycler implementation supports the following admission policies:

—the KEEPALL policy is a baseline policy that keeps all instruction instances
advised for recycling by the optimiser. It allows for entire execution threads
to be stored in the pool and reused later on without disturbing the matching
process.

—the CREDIT policy applies an economical principle to resource utilisation. Ini-
tially every instruction marked for recycling is supplied with a number of credits.
Every time an instruction invocation is stored in the recycle pool, the source

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

An Architecture for Recycling Intermediates in a Column-store : 13

instruction ’pays’ with one credit. The instruction may receive its credits back
only upon a reuse of some of its invocations in the pool.

Credits can be returned in two ways. In the case of local reuse during the same
query invocation, the credit is returned immediately. If a global reuse occurs, i.e.,
outside the source query invocation, only the reuse statistics are updated. If such a
globally reused instance is evicted later, the source instruction in the query template
receives its credit back. In this way an instruction that has already shown to be
useful, has the opportunity to be admitted again to the pool in the future.

If instruction instances are not reused, for example due to different parameter
values, the credits are exhausted after a few invocations. In this case new instruction
instances are not admitted to the pool anymore and, thus, cannot claim more
resources. Of course, when the underlying temporary results are dropped from the
pool, the instruction gets a chance to re-enter it with new materialised results.

The CREDIT policy respects the instruction dependencies. In contrast to the
KEEPALL policy, a thread of execution might be cut off earlier at an instruction
that is not reused and has spent all its credits. Hence, the CREDIT admission
provides almost full recycling opportunities, but with more economic resource use.

Preliminary experiments with admission policies based on filtering individual
instructions on their properties, irrespective of the dependencies, did not prove
to be useful. If, for example, the policy filters instructions purely based on their
individual CPU cost, it would discard some cheap instructions, such as reverse, but
would also cut the opportunity to recycle some expensive dependent instructions,
such as joins (see for example (X36; X37) in Figure 2). The scope of such negative
effects is hard to estimate at run time when complete statistics about dependent
instructions is not available before their actual execution.

4.3 Eviction Policies

Keeping a large number of intermediates around and checking for their usefulness
at query run time at some point becomes a performance issue in itself. The main
sources of overhead are the time taken for instruction matching and the space for
storage of intermediates. To keep this overhead under control, the recycler routine
cleanCache is called when needed to release resources (Algorithm 1, line 21). Tt
uses the ewviction policy to determine which intermediates to evict to make room
for the ones more useful for the current load. This process is supported by the
execution and reuse statistics of the instructions.

Despite similarities with the traditional cache replacement policies, there are
several important differences when replacement algorithms are applied to caches
of database query results. More precisely, maximising the cache hit ratio is not
sufficient by itself since the items in the cache have in general different sizes and
different costs in terms of resources consumed for their computation. Replacement
algorithms that take these factors into account have been proposed in [Scheuermann
et al. 1996] and other work. An important assumption in this case is that the
retrieved sets are independent of each other.

As explained in Sec. 4.1, the design choice of bottom-up sequence matching re-
quires the eviction policy to respect instruction dependencies. Therefore, the evic-
tion policies first find the set L of all instructions at the end of the execution

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

14 . Milena Ivanova et al.

threads, called for convenience leaf instructions. In principle, the instructions from
the query under execution, including the last instructions in each execution thread,
are protected from eviction. They are predecessors of the current instruction and
should be kept due to instruction dependencies?.

The eviction policy picks one or more leaf instructions, such that they have the
least expected loss for the system at large. We consider three factors to capture evi-
dence for reuse from recycling: freshness, contribution to performance, and lifetime.
The first factor is the time when an instruction has been used. The second is the
benefit that the system has already gained from recycling the instruction. Finally,
the lifetime reflects when an intermediate of an instruction has been created and
allows for ageing of the benefit. Based on these factors, we propose the following
three eviction policies.

—LEAST RECENTLY USED (LRU). The traditional LRU policy takes into account
the time when an instruction has been computed or most recently reused. It
picks the oldest entries for eviction.

—BENEFIT Poricy (BP). The benefit policy considers the intermediate’s contri-
bution to performance so far and picks entries with the smallest one. The con-
tribution is computed from the cost of the intermediate and a weight factor:

B(I) = Cost(I) x Weight(I). (1)

The cost reflects the resources spent to compute the intermediate. The major
resource we consider is CPU time, Cost(I) = tcpy(I). This choice is based on
the encompassing optimization goal to minimise the total query and workload
response time. The weight function reflects the number of reuses and their type.

) [k-1, k>1Aglobal reuse(I)
Weight(I) = { 0.1, k=1Vlocal reuse(I) (2)

where k is the total number of references to the instruction I. Since intermediates
that have been reused have already demonstrated a return-of-investment, they
have a bigger weight than ones that have not. We also note that if an instruction
has been reused only locally, there is no incentive to keep it in the pool beyond
the query scope. Hence, we give a minimal weight of 0.1 to those instructions. In
this way, an intermediate with relatively small cost, but a high reuse count, might
be kept, and one with a high potential benefit(cost) that never 'materialises’ in
a reuse might be evicted.

—HisTory Poricy (HP). The history policy is a modification of the benefit policy
that takes both the total benefit and the lifetime of the instructions into account.

B(I) = Cost(I) * Weight(])’ 3)

tcur - tadm
where t.,, is the current time and t,4,, denotes the time of admission of the
instruction to the pool. This allows for eviction of the oldest one among in-
structions with comparable total benefits. The policy is an adaptation of the
cache replacement algorithm based on the profit performance metric proposed in

3 An exception of this rule is made when intermediates of a single query fill the entire RP.

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

An Architecture for Recycling Intermediates in a Column-store : 15

[Scheuermann et al. 1996]. It considers the K-latest references and uses a dif-
ferent cost metric (the number of buffer block reads). Since the recycler applies
it per instruction, rather than per entire retrieved set as in Watchman, and to
minimise the statistics administration, we chose to keep only the first reference
moment instead of the K-latest.
The cleanCache routine is triggered when a resource limit is reached. Resource
limits can be put on the size of the recycle pool memory, the number of entries in
the recycle pool, or both. Since the resource pool is located in memory, the recycler
always watches the hard limit of the physical memory size.

We provide two versions of the BENEFIT and HISTORY policies corresponding
to the resource limitation that triggers the eviction. If a single entry needs to
be freed, the BP,,; and H P.,; policies pick the entry with the smallest benefit
B = minjer B(I), where L is the set of all leaf instructions, and the benefit is
defined according to the policy specification.

To address a memory limitation, the BP,,c,, and H P, policies have to solve
an optimization problem to find a set of the least beneficial instructions that would
also release enough memory. The policies use the same algorithm differing only
in the definition of the benefit. Let M (I) be the memory taken to store the re-
sult of an instruction I, and M,., be the memory required for a new intermediate.
The algorithm needs to find the set of instructions E to evict, such that £ C L,
> tep M(I) > M;cq, and that minimises the total benefit) ;. B(I). In practice,
we solve the complementary problem, which is a version of the binary knapsack
problem. We find the instruction subset L — E that fits in the knapsack volume
> rer M(I) — Myeq and has maximum total benefit. To achieve run time perfor-
mance we use an approximate solution, usually called the greedy algorithm [Martello
and Toth 1990]. It considers the items in a decreasing order of the profit per unit
weight, where the profit is B(I) and the weight is the size M (I) of the intermediate
result. Each item is put into the knapsack if it fits. To improve the worst-case
performance, the solution is compared with an alternative given by the item of
maximum profit. This puts an upper bound of the worst-case to be at most twice
worse than the optimal solution.

In case of memory limitations, it is possible that the leaf instructions do not
release enough space. Then the eviction policies evict all leaf instructions and start
another iteration of the algorithm.

5. INSTRUCTION SUBSUMPTION

Expression subsumption analysis is an effective way to improve query execution.
During query optimization it is used to find common sub-expressions to avoid their
repetitive evaluation. It is also used in finding alternatives in a collection of mate-
rialised views to obtain cheaper plans [Goldstein and Larson 2001]. Subsumption
analysis can also be applied at run time in the recycler on the instruction level. For
this we need to find instructions whose result set is a superset of what we intend to
compute. To determine whether a result set is a super-set of another one requires
knowledge of instruction semantics. Therefore, subsumption implementation in the
recycler considers each instruction type individually. In the following we describe
two types of subsumption implemented in the recycler: from a single instruction
and from a collection of instructions.

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

16 . Milena Ivanova et al.

5.1 Singleton Subsumption

During the search for a reusable result in the recycle pool we determine if a sub-
sumption relationship holds with the target instruction. If several candidate inter-
mediates are present, the recycler chooses one based on a cost model, and replaces
the corresponding column operand of the target instruction with a reference to the
result kept. The performance characteristics of MonetDB allow for a simple cost
model based on the size of the operands.

The primary target for the recycler is to establish the subsumption relationship
for select operations, because most queries start by reducing one or more base tables.
Furthermore, an efficient relationship test calls for a minimal set of properties to
be considered. This leads to focusing on range selections over ordered domains.
More formally, consider the instructions A and B over an attribute with an ordered
domain:

A := algebra.select(X,1bl,ubl);
B := algebra.select(Y,1b2,ub2);

The instruction B can be subsumed from the intermediate result of instruction
A iff:

1) X=Y
(2) [1b2,ub2] C [Ib1, ubl]

If there are no auxiliary indices then the cost of the selection is determined by the
size of the operand, which means that we can safely compute B by substituting the
intermediate result of A for the column operand Y.

B := algebra.select(A,1b2,ub2);

To illustrate, suppose the content of the recycle pool is as in Table I and a query
comes with a selection predicate on ORDERDATE that is compiled into the following
MAL instruction:

X369 := algebra.select(X19,1996-08-01,1996-09-01,true,false);

This instruction overlaps with two previously executed selections on ORDERDATE,
whose intermediates are kept in the recycle pool as variables named X26 and X142,
respectively. The new instruction is matched to the two super-set instructions, and
the intermediate with the smallest number of tuples, X26, is chosen. The recycler
run-time support modifies the original instruction for the duration of interpretation
into the following:

X369 := algebra.select(X26,1996-08-01,1996-09-01,true,false);

Upon completion of this modified instruction, the result is admitted to the recy-
cle pool according to the prevalent admission policy and the target instruction is
restored to permit re-evaluation of the query template.

A special case of select subsumption is also implemented for the SQL ’like’ oper-
ator, i.e., for string matching with wild card patterns. It assumes exact match of
the column argument of the operator. Typically, this occurs for operators over the
same base table columns or those with exact match predecessors.

The second most important operation in the SQL query plans produced by Mon-
etDB are the semijoins, because they implement the relational projection of the

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

An Architecture for Recycling Intermediates in a Column-store : 17

candidate result set 0IDS with all target columns of the result set. The semijoin is
a form of subset selection and can be subsumed in an analogous way. It extracts
all tuples of the first operand whose keys are in the domain of keys of the second
operand. Assume

A := algebra.semijoin(X,V);
B := algebra.semijoin(Y,W);

be two semijoin instructions. The instruction B can be subsumed from the
intermediate result of instruction A iff:

1) X=Y
2 wcv

The instruction B is computed by substituting the intermediate of A for the first
operand Y.

B := algebra.semijoin(A,W);

The condition stated can be proven using the set semantics of the relational
operators. In particular, the semijoin operator A = {t|t € X A key(t) € K(V)}
where K (V) is the set of all key values of V. Since W C V we can represent the
set of tuples V' as a union of W and W/ =V —W. Hence, A = {t|t € X ANkey(t) €
K(W)UK(W'")} and clearly contains all result tuples of B.

To illustrate, consider the following content of the recycle pool:

X26 := algebra.select(X19,1996-07-01,1996-10-01,true,false);
X340 := algebra.semijoin(X2, X26);
X369 := algebra.select(X19,1996-08-01,1996-09-01,true,false);

The variable X369 is a subset of X26, computed in this case by selection sub-
sumption. Then the following semijoin operator:

X370 := algebra.semijoin(X2, X369);

can be subsumed from the intermediate result X340 of the matching semijoin
operator. In particular, the variable X2 can safely be replaced by X340 in the
modified instruction.

5.2 Combined Subsumption

Re-using a single instruction can be implemented efficiently, but does not exploit
all possibilities of a cache of intermediates. Instead, a more complex analysis over
sets of instructions is implemented in the recycler.

For example let the recycle pool contain three selections over a column A.

X1 := algebra.select(4,3,7)
X2 := algebra.select(A,5,15)
X3 := algebra.select(A,6,40)

Furthermore, assume that a new selection should be computed over the range
of values [4, 8]. Besides the regular computation over the column A, it is possible
to compute it by subsuming the union of intermediate results (X1, X2) covering
the range [3,15], or the combination of intermediates (X1, X3) covering the range
[3,40]. In general, the subsumption can be performed over any collection of inter-
mediates that combined cover the target instruction range.

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

18 . Milena Ivanova et al.

Algorithm 2 Combined Subsumption
Input: MAL instruction
Global variable to recycle pool RP
Sol — I
R—1
Pl
for all X € RP do
if overlap(range(I),range(X)) then
R~ RU{X}
Pl — P1U{{X}}
10: for N=1to|R|—1do

11: P2 —1

12: for all S € P1 do

13: for all X € R do

14: if X ¢ S Aoverlap(range(S), range(X)) then

15: U~ SU{X}

16: if cost(U) < cost(Sol) then

17: if range(I) C range(U) then > A solution is found
18: Sol — U

19: else > A partial solution is found
20: P2 — P2U{U}

21: Pl «— P2
22: return Sol

The decision whether to apply combined subsumption and which combination to
use is based on a cost model. Suppose A is a column, X; are intermediates derived
from A, and C' denotes the cost of an operator. The subsumption from a combi-
nation S = U], X; of n intermediates is more efficient than regular computation
ifft C(A) > C(S). The cost of the combined solution is composed from the costs of
piece-wise executions and an overhead, C(S) = Y., C(X;) + ov. An example of
overhead is the time to run the subsumption algorithm itself. When subsumption
is possible from several combinations, the same cost model is applied to choose the
most efficient solution.

Our subsumption analysis algorithm starts with finding the set R of all instruc-
tions in the recycle pool whose result set overlaps with the target instruction I.
Then, it finds the subsets S C R of instructions that are sufficient to compute I.
Although each of the subsets S can be used for computation of I, the recycler picks
the combination with the minimal estimated cost according to the cost model.

Formally, the problem boils down to constructing all possible subsets of the set R,
checking whether they are possible solutions and finding the one with minimal cost.
The problem has exponential complexity O(2%) on the number k of instructions in
the set, k = |R)|.

We implemented a combined subsumption algorithm based on dynamic program-
ming, illustrated in Algorithm 2. The main idea is to sequentially construct com-
binations of 2,3, ...,k intermediates and cut the less promising partial solutions
based on their estimated cost. Each iteration of the loop on the number of com-

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

An Architecture for Recycling Intermediates in a Column-store : 19

ponents N (lines 10-21) processes the set P1 of partial solutions of size N and
constructs a set P2 of partial solutions of size N + 1. The solution with the lowest
cost found so far is stored in the variable Sol. The algorithm complexity is reduced
by early cutting of partial solutions with estimated cost higher than the cost of Sol
(line 16). In the case of a selection operator, we use a simple cost model considering
only the size of the operand C'(X;) = Sz(X;).

In general this type of subsumption is expected to bring substantial performance
benefits for queries with relatively small selectivities over large databases. There-
fore, we evaluate the combined subsumption algorithm using the SkyServer appli-
cation. Our micro-benchmark experiments show good scalability of the algorithm
with overhead under 0.5ms for small &,k < 10. Detailed results are presented in
Section 8.3.

6. RECYCLING WITH UPDATES

The MonetDB recycler has been designed for read-only database applications. This
limitation was justified by the characteristics of the workload of scientific data ware-
houses with prevailing analytical queries, a well-defined small set of web-inspired
SQL query templates, and rare periodical bulk updates. With a little care, however,
the technique can also be applied to a volatile database. The base line is to monitor
the database state, to recognise when and where an update takes place, and to react
accordingly by synchronising the affected part of the recycle pool. This calls for
monitoring the DDL statements, e.g., creation or dropping of database objects, the
DML statements, e.g., inserts, deletes and updates, and the transaction boundaries
to cope with transaction commit and abort.

In the remainder of this section, we illustrate the solutions to be effectuated in
the context of MonetDB. Other systems may require different technical solutions.

6.1 Design Space for Update Recycling

The synchronisation of the recycle pool with the updated data state has three im-
portant design dimensions: what, when and how. The choices made along these
axes are not independent, they may affect the possible alternatives in other dimen-
sions. However, the choices are similar to those encountered in e.g., view and index
maintenance, as we will elaborate in the following section.

First we consider when the synchronisation can take place. An immediate syn-
chronisation approach keeps the system in a consistent state. However, it also adds
a potentially high overhead to the performance of the DML statements and it has,
in general, a small guarantee for a positive return of investment since the syn-
chronised intermediates in the recycle pool may be evicted before they have been
reused.

The transaction commit point also provides a natural moment to synchronise the
recycle pool. The MonetDB/SQL transaction scheme is based on building delta ta-
bles for insert/deletes. At transaction commit they are checked for conflicts using
an optimistic concurrency control scheme and, subsequently, used to update the
base table. The disadvantage of this scheme aligns with the immediate synchroni-
sation approach. It delays transaction response time and the work invested might
be in vain.

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

20 . Milena Ivanova et al.

Therefore, we consider approaches to postpone the hard work using a decoupling
from the transaction commit. The recycler only marks the intermediates as being
invalid as soon as an underlying persistent table is updated. In this way a relatively
small overhead is added to the DML statements. A separate recycler synchronisa-
tion thread can take care of the synchronisation steps using the deltas. The last
opportunity to reconcile the recycle pool is to postpone the work until an attempt
is made to re-use stale information. This approach avoids any unnecessary work on
intermediates that are not reused and, hence does not waste resources.

The second dimension of the synchronisation design is granularity or what part
of the recycle pool content should be affected. Possible solutions are the entire
pool, complete relational tables, individual columns, or selective operations. The
granularity of recycle pool synchronisation has influence on its effectiveness and
cost. A naive solution is to clean the entire recycle pool upon a DML statement.
Obviously, such an approach can lead to a potentially large loss of benefits from
intermediates being thrown out that were not actually affected by the update. The
main advantage is its simplicity and the low overhead. Its performance would not be
worse than MonetDB without the recycler being active. A refinement is to decrease
the grain size, e.g. using a transaction time stamp kept with each relational table
and making sure that all its snapshots in the recycle pool carry the same stamp.
The drawback, however, is that a small local update may invalidate all the work
already done which was potentially valuable for reuse.

In the column-store MonetDB it is straightforward to detect which columns and
their derivatives are affected by an update, and to synchronise on column level.
Finally, on the other extreme is to consider individual MAL operations only. For
example, a select operation over a base table is a good starting point. Given the
insert/delete deltas for each column, we can simply check for non-overlap with the
operation. If none of the newly added tuples qualify and the intermediate does
not contain any of the deleted ones, then the intermediate can be retained. If the
insertion overlaps with the fragment in the pool, we can add the missing tuples and
remove the remainder of the plan since propagation of the insertion may require
doing complex operations.

The third important design question is how exactly to synchronise the recycle
pool. We envision two basic mechanisms for this: invalidation and propagation.
Evicting the invalid intermediates is simple, fast and releases memory in the pool.
Propagation of updates is in general a more complex and costly mechanism, which
preserves, at least partially, the opportunities for reuse. The invalidation of inter-
mediates is generic, while the propagation mechanism is specific for the operator
type and the type of the update.

Consider an expensive intermediate computed over a large column to which a
few tuples have been appended. Propagation can be performed by executing the
original operator over the newly appended tuples only and then appending the
result to the intermediate retained. Such propagation can be much cheaper than
re-computing over the original large attribute.

The choice of synchronisation mechanism requires careful consideration to be
made separately. It also strongly depends on the workload mix, which makes general
guidelines hard to quantify.

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

An Architecture for Recycling Intermediates in a Column-store : 21

6.2 Related Work on Update Propagation

The problem of keeping the content of the recycle pool synchronised upon updates of
base tables is closely related to the problem of materialised view maintenance, which
has been extensively studied in the database community. The invalidation approach
corresponds to re-computing a view from scratch, while propagation algorithms
correspond to incremental view maintenance using differential algorithms [Blakeley
et al. 1986; Griffin and Libkin 1995; Ross et al. 1996; Luo and Yu 2008].

There are a few aspects in which recycle pool maintenance differs from view main-
tenance. First, and foremost, materialised views are part of the database schema
and managed by the DBA. Conversely, the recycled intermediates are automatically
collected and reused at run time. Hence, their maintenance needs to be integrated
with the run-time support of the recycler and they do not require manual interven-
tion. Second, the recycle pool in MonetDB is kept on the server where the base
tables reside. This restriction does not apply to materialised views, which can be
spread over a complete distributed system. Finally, the finer granularity of recy-
cling per relational algebra operator allows for instance partial propagation of the
updates to operators for which it is cost efficient, and invalidation for the remainder
of a cached plan.

6.3 Outlook to a Solution

The analysis of the design space shows that the best synchronisation mechanism for
a given situation heavily depends on the trade-off between the re-computation and
propagation costs. In turn, these costs depend on the update type, the operation
involved, and the resource claims of the argument columns. In general, the solutions
can not be separated from a clear vision of the workload characteristics.

The synchronisation of DDL statements is straightforward. Creation of new
objects does not affect the content of the recycle pool. Deletion of objects (drop
table, drop index) requires invalidation of all dependent intermediates. It does not
necessarily require a scan through the recycle pool, because the eviction policy will
in due course drop them. The explicit scan through the recycle pool ensures that
we free up resources quickly.

The MonetDB DML statements require more complex synchronisation. We con-
sider here only inserts and deletes. Updates are implemented as a combination of
both. In general the propagation is a form of incremental computation well studied
in the database literature. To propagate a delta 0 through an operator P first the
operator is executed over 0. The result P(6) is used for two purposes: (1) to up-
date the intermediate result of P, and (2) as input delta that has to be propagated
through all the operators dependent of P (that use P’s result as input).

If the result P(0) is empty the partial result of P can be retained without change.
The propagation in this case is just a marking of the intermediate as valid again.

If the result P(¢) is not empty it is used to modify the stale intermediate, where
the precise modification depends on the type of update and the operator type. In
the following we describe the propagation mechanisms for different situations.

—Selection. The propagation first applies the select operator to the insert delta
5%, delete delta 6~, or the combination of both. The computed delta P(6T) is
appended to the intermediate result, the delta P(67) is deleted. The propagation

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

22 . Milena Ivanova et al.

bind A

[bind A] &7 oSNNS
oidl | 1 -
oz | 7 ST
oid3 | 5
select E select A > 2
project project
o3
oid3
markT markT
0id2 ‘ 0id0 oid2 oid0
0id3 oid1l

5 [oids [78

reverse

- - _ [0id0 | oid2 oidl | 3.5
0id0_| oid2 oidl | 3.5 oidl | oid3 oid2 | 4.2
oid2 | 4.2 oid3 | 7.8
0id0 | 4.2
0id0 | 4.2 oidl | 7.8
(a) Before update (b) After update propagation

Fig. 3. Excerpt of a cached MAL plan.

of updates through selection is performed by deleting the delta P(§~), followed
by appending P(§+).

After the stale selection intermediate is refreshed, the recycler either invalidates
the remainder of the execution thread or continues with delta-wise propagation
through dependent operators using the freshly computed P(6%) and P(67).

— Projection. A projection operation extracts the head (row identifier) of a column.
The propagation step is to simply execute the projection over the delta and
append, resp. delete, the result from the intermediate.

—Reverse. A reverse operation exchanges the places of the head and tail of a binary
table (BAT). The propagation step is to simply execute the reverse over the delta
and append, resp. delete, the result from the intermediate.

—MarkT. The markT operation generates a new dense sequence of row identifiers.
The propagation of § requires modified execution of the MarkT operation over
5T where the sequence starts with the next row identifier after the last one in
the stale intermediate. The propagation of §~ is more complex since deletions
create holes in the sequence of row IDs. The result delta can be computed as
a compensatory semijoin operator of the MarkT intermediate result and 6.
However, the holes created by §~ propagation in the dense sequence of identifiers
complicate further propagation and we expect it to be inefficient.

—Join. The propagation of join takes into account the possible updates in both
operands. Suppose join has two operands R and S. The propagation of inserts

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

An Architecture for Recycling Intermediates in a Column-store : 23

computes 5; XS, RNX (5§r, and 5}% X 5;, and appends the results to the inter-
mediate. Similarly, the propagation of deletes computes 6, X S, R X ¢, and
0 M 0g, and deletes the results from the intermediate. For the case of mixed
inserts and deletes we follow the rules for differential join re-evaluation described
in Blakeley et al. [1986].

Figure 3a shows an example of MAL plan instructions and their respective in-
termediates cached in the recycle pool. Figure 3b illustrates the state of the inter-
mediates after update propagation triggered by the addition of a tuple to the base
table. At the end of the insert transaction the 6T is merged with the base table, up-
dating the intermediates of the two bind operators. The remaining instructions in
the cache plan are marked as invalid. The first attempt to reuse the select operator
triggers the insert propagation through the remainder of the cached plan.

6.4 Implementation Status

The MonetDB implementation used during the experiments poses some limitations
on the solution space. Since the recycler works at the MAL level, it should be able
to recognise all DDL and DML statements and the transaction boundaries?.

The DDL and DML statements are monitored by the recycler optimizer. When
an update is detected, the optimizer injects calls to the synchronisation routine
RecycleReset. The synchronisation is based on immediate invalidation of all in-
termediates that have been affected by the change. The invalidation is performed
column-wise. Insertion and deletion of rows affect all cached columns of the changed
table, but updates invalidate only the columns directly affected. The advantages
of this choice are its low-cost and immediate freeing of memory resources. As a
future work we intend to investigate the trade-offs between this approach and the
update propagation, which is expected to have advantages for small changes over
expensive intermediates.

7. TPC-H EVALUATION

To gain a deep understanding of the recycler mechanisms and its effect on the query
performance, we conduct extensive experiments with the TPC-H Decision Support
benchmark [Transaction Processing Performance Council 2008]. The experiments
are run against a database of scale factor 1 (SF1), i.e., of size approximately 1 GB.

All experiments are run on dual Quad Core AMD Opteron 2GHz processors
with 8 GB RAM and 1TB of disk space. All times reported are measured in an
experimental environment prepared in the following way: first, we execute a subset
of the query batch with an instance of each query template. This ensures that all
persistent BATs retrieved in the batch are touched and fill memory with hot data.
Next, we empty the recycle pool, which triggers queries to fill it before they can
benefit from reuse of intermediates. The purpose of this preparation step is to
factor out the IO costs and better illustrate the pure effect of the recycler.

First, we analyse the queries with respect to commonalities that can potentially
bring benefits from reuse of intermediates. We distinguish two types of common-
alities: intra- and inter-query. The intra-query (or local) type describes the cases

4The experiments were run against the Feb 2010 release. Transaction boundaries were not yet
visible at MAL level, which called for a focus on the immediate synchronisation.

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

24 . Milena Ivanova et al.

Instructions Time (s)
Query # | Intra | Inter || Total Savings

% % Pot. | Local | Glob.
Q1 36 2.8 0 5.72 | 3.54 0.30 0
Q2 106 0.9 2.8 0.22 | 0.22 0 0.07
Q3 39 0 5.1 2.61 | 2.40 0 0
Q4 36 0 41.7 1.72 | 1.65 0 1.44
Q5 74 0 2.7 1.16 | 1.15 0 0
Q6 11 0 0 0.53 | 0.52 0 0
Q7 106 3.8 3.8 1.61 | 1.11 0.36 0.56
Q8 61 0 6.6 0.60 | 0.56 0 0.16
Q9 59 0 3.4 1.38 | 1.25 0 0
Q10 54 0 3.7 1.37 | 1.34 0 0.20
Q11 36 33.3 2.8 0.16 | 0.16 0.03 0
Q12 6 0 33.3 1.17 | 0.55 0 0
Q13 17 0 11.8 2.88 | 1.27 0 0
Q14 18 0 0 0.21 | 0.21 0 0
Q15 12 0 0 0.23 | 0.19 0 0
Q16 14 0 42.9 0.88 | 0.27 0 0.01
Q17 29 0 3.4 0.96 | 0.95 0 0
Q18 12 0 75.0 1.83 | 1.70 0 1.68
Q19 39 154 7.7 3.72 | 1.69 0.99 0.49
Q20 25 0 12.0 0.95 | 0.82 0 0.01
Q21 154 9.1 12.3 5.80 | 5.38 0.72 2.94
Q22 4 0 75.0 0.65 | 0.15 0 0.15

Table II. Characteristics of TCP-H queries

when common sub-expressions exist within a single query plan, typically among
sub-queries or between a sub-query and the main query. The inter-query (or global)
type refers to different query invocations sharing common sub-queries in the TPC-H
workload. These can be different queries or different instances of the same query
pattern.

Table II shows the commonality characteristics of the TPC-H queries. The In-
structions/# column contains the total number of instructions marked by the re-
cycler optimiser for monitoring. We will call those the potential hits of the recycler.
The number does not include instructions that bind columns to variables. Although
those instructions are monitored and reused, they do not constitute common com-
putations. The Intra and Inter columns show the percentage of marked instructions
that are locally, respectively globally, reused. To estimate the inter-query common-
alities we assume that the same query is executed with different parameters, where
the parameter generation follows the TPC-H specification. In this analysis we
do not include inter-query commonalities among different queries. These depend
strongly on the application and are hard to estimate in general. Given the alge-
braic framework, this table highlights the opportunities for reuse independent of
the technique deployed.

The right side of Table II shows the total execution times of the queries against
MonetDB together with time savings from the recycler. We summarise the potential
savings, i.e., the total time spent in monitored instructions, the realised intra-query
savings and those from a single inter-query reuse. Manual inspection of the query

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

An Architecture for Recycling Intermediates in a Column-store : 25

0.6 I F
Re] 8 0.8 - b
S 04l g S
g € 06 E
[2] [%]
= 02f E = 04
Hit ratio — 0.2 Hit ratio —
O 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
200 2000
—~ A a - - ~
é é 1500
g g 1000 B
= Naive — = 500 | Naive — |
= Recycler = Recycler
O 1 1 1 1 1 1 1 0 1 | 1 1 L
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
. 80 150
o) Total — m
S 60 rReused S wF """~ =
> >
g 4 5
g 20 g 50 - Total — 7]
Reused
E 0 I | 1 1 1 1 1 1 E O 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
(a) Intra-query(Q11) (b) Inter-query(Q18)

Fig. 4. Recycler effect with different type of query commonalities

execution traces demonstrates significant time savings, such as for Q4, Q18, and
Q21, which confirms that the instructions reused carry a high cost. For other
queries, such as Q16, time savings are minimal despite the high percentage of
instructions reused. These instructions are just too cheap.

7.1 Micro- Benchmarks

Next, we examine the recycler performance and resource utilisation over four query
workloads: with prevailing local, prevailing global, or mixed commonalities, as well
as queries that do not exploit overlaps. We choose queries typical for each of the
aforementioned groups. In this micro-benchmark we execute 10 instances of each
query generated with the TPC-H query generator. To better illustrate the recycler
mechanics, the admission policy is KEEPALL and there are no resource limitations;
no eviction policy interferes with the results.

Query Q11 contains substantial intra-query commonality where a large part of
the sub-query is shared with the outer query block. The common part includes a
selection, a 2-way join, and an arithmetic computation over projected attributes.
The profile of the query is shown in Figure 4a. The top diagram shows the hit ratio
of individual queries. It is the ratio of the hits in the recycle pool (successfully
recycled instructions) and the potential hits. Due to the intra-query commonalities,
we observe recycle pool hits and time improvements (in the middle diagram) from
the very first query instance. Since the inter-query overlap is negligible, the time
improvement and the hit ratio are stable for all instances. The bottom diagram
shows the RP memory, i.e., the cumulative memory consumption for intermediates,
after each query instance. It grows with a stable rate: each query adds its own
intermediates different from the previous ones.

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

26 . Milena Ivanova et al.

1 0.2
o 08F 7 2
g 06 ®
2 oaf 1 g %
T T
02 ¢ Hit ratio — Hit ratio —
O 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
4000 300
£ £ 200
5 2000 | g Y
-E Naive — E 100 - Naive — 7
Recycler Recycler
0 1 1 1 1 1 1 O 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
400)
) Total — m Total —
S 300 - Reused b 2 40 | Reused
> >
2 200 | . g ol 1
5 100 § 5
E 0 [1 1 1 1 1 1 1 E O = I I I I I i 3 3 =
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
(a) Inter- and Intra-query(Q19) (b) Limited overlap(Q14)

Fig. 5. Recycler effect with different type of query commonalities

Query Q18 illustrates the inter-query type of commonalities among different in-
stances. Its sub-query groups the rows of the LINEITEM table on the foreign key and
selects the groups with an aggregate function value above a certain level. Group-
ing of rows and computing the aggregate function is the overlapping computation
between instances of Q18 that differ only in the value of the selected quantity level.
Thus, when the intermediates of grouping and aggregate functions are kept in the
recycle pool after the first execution, every subsequent instance of Q18 reuses them
and computes only the remainder of the plan that depends on the query parameter.
In the case of Q18 the grouping and aggregation are also the main ingredient of the
processing time. The query profile shown in Figure 4b reveals how the inter-query
commonalities are used by the recycler. The first query instance has a very low hit
ratio and time improvement, but high memory consumption for the intermediates
kept in the pool. The subsequent queries achieve a very high hit ratio and time
savings. The time goes from 1.8s for the first execution (SF1) to 24ms for all sub-
sequent executions with 75% hit ratio, and to 1lms for executions with 100% hit
ratio. The memory diagram shows that all intermediates are reused and no sizable
new intermediates are added to the pool.

Traditionally, such a query can be sped up by a materialised view storing the
groups of the LINEITEM table rows together with the computed aggregates. We
experimented with a version of query Q18 using a materialised view and observed
performance comparable with the recycler, namely 2ms per query instance using the
same experimental settings. The recycler brings both performance and flexibility.
If grouping attributes or the aggregate functions change slightly, the recycler will
keep the modified intermediates and automatically adapt to the workload change
without human guidance.

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

An Architecture for Recycling Intermediates in a Column-store : 27

Naive ==
Recycle first
Recycle avg
1000 ¢ E
)
£
Q L -
= 100 §
2
<
10 | E
1
Q11 Q18 Q19 Q14

TPC-H Query
Fig. 6. Recycler effect on performance

Query Q19 has a mixture of intra- and inter-query overlaps. It contains three
sub-queries with a number of predicates overlapping both inside a query and among
different instances. In the query profile in Figure 5a we observe some hits in recycle
pool and time improvement in the first instance due to the intra-query commonali-
ties, followed by larger improvements and a higher hit ratio for subsequent instances
due to the combined effect of intra- and inter-query commonalities.

As a counter example of a query for which the recycler is not efficient we consider
Q14. Although a number of instructions are monitored by the recycler, all invo-
cations have different parameters and the overlap is limited to two cheap auxiliary
instructions. Hence, the query demonstrates rather the potential overhead of the
recycler for storing and matching intermediates. In the query profile in Figure 5b we
observe a small hit ratio caused by the auxiliary instructions. Each invocation adds
18 instructions to the recycle pool and allocates 4 MB for the intermediates with-
out amortising this resource investment in the form of performance improvements.
We observe an average overhead of 3ms per query invocation due to the recycler
extension. The average performance improvements for the 10-instance benchmarks
of the above queries are illustrated in Figure 6.

The memory profiles show that both queries with partial overlap and without
overlap may accumulate intermediates that are not reused. Having observed this
danger, we turn our attention to the admission policies that can prevent waste of
resources by early filtering of intermediates at the admission to the recycle pool.

7.2 Evaluation of Admission Policies

In this section we evaluate the CREDIT admission policy (CRD) in terms of resource
utilisation and the number of RP hits achieved. The base line for comparison is the
KEEPALL policy that stores all the instructions designated for recycling. Figure 7
shows the hit ratio to the base line(a), the percentage of reused memory(b), and
reused recycle pool entries(c), as the number of credits increases. The experiments
were run in unlimited resource settings.

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

28 . Milena Ivanova et al.

1
09 F —
S os8f E
[
.‘I;‘
0.7 Q11 —=— T
Q18
19 ——
0.6 F Q —
05 1 1 1 1 1 1 1
2 3 4 5 6 7 8 9 10
Credits
(a) Hit ratio to Keepall policy
100 - = 100 §

1+:

Qll —=— Q1
Q11 Keepall ---- Q11 Keepall ----
80 18 | - 80 18
— Q18 Keepall S Q18 Keepall
IS 19 —— 5 19
2 Q19 Keepall - o 19 Keepall -
g 60 - T £ 60 -
[3] %]
£ I - -
3 2]
¢ 5
20 F . © 20f -
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
Credits Credits
(b) Reused memory (c¢) Reused entries in RP

Fig. 7. Effect of credit parameter to resource utilisation and RP hits

Credits do not affect the hit ratio for intra-query commonalities (Q11), since local
reuses return the credit immediately to the source instruction. However, having a
small number of credits successfully limits the admission of instructions that are
not reused and substantially improves memory and recycle pool entry utilisation.

The number of credits affects the hit ratio for inter-query commonalities (Q18
and Q19). Having a small number of credits improves the resource utilisation (Q19),
but also prevents keeping and reusing some of the overlapping intermediates. As the
number of credits increases, the hit ratio improves, simultaneously with degradation
in resource utilisation in terms of larger sizes and lower percentage of reuses. In the
case of Q18, both admission policies use 100% of memory and recycle pool entries,
and the resource utilisation is independent of the credit parameter.

The analysis of advantages and drawbacks of the originally proposed admission
policies inspired us to look for a solution that achieves resource efficiency without
losing performance. We developed an adaptive version of the credit admission
policy that adjusts the number of credits given to an instruction based on statistics
collected. The adaptive credit policy (ADAPT) starts in a similar way giving a
number of credits k to all instructions marked for recycling. However, after k
query template invocations, the instructions that have been reused at least once

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

An Architecture for Recycling Intermediates in a Column-store : 29

5000 100 100
KeepAll ----
Credit ——
4000 R g 8O~ g g e Adapt == 1
S 3000 2 60 E S 60 f— R
~ 0
5 2000 g 4or R 5 40 R
= 3 %
(53 =1
1000 KeepAll ---- © 20 KeepAll ---- g 20+ B
Credit —— Credit ——
Adapt == Adapt ==
ol v TN T ol M S ol v v
3 456 7 8 910 3 45 6 7 8 910 3 45 6 7 8 9 10
Credits Credits Credits
(a) Total memory (b) Reused memory (c) Reused entries in RP

Fig. 8. Effect of admission policies on resource utilisation

1 110
KeepAll ----
Credit ——
095 [g 105 | Adapt —=- |
2 z
©
= 09 B E 100 B
T [(=
]
0.85 B 95 B
Credit ——
Adapt —--
08 L Il Il Il Il Il Il Il 90 L Il Il Il Il Il Il L
3 45 6 7 8 9 10 3 4 5 6 7 8 9 10
Credits Credits
(a) Hit ratio (b) Execution times

Fig. 9. Effect of admission policies on performance

get unlimited number of credits, while all others exhaust their credits and are not
admitted to the recycle pool anymore.

To evaluate the overall effect of the admission policies we create a mixed work-
load with both local and global overlaps. We select 10 TPC-H queries (4,7,8,11,12,
16,18,19,21, and 22) with relatively large overlaps to highlight how well the admis-
sion policies recognise instruction categories in terms of reuse. We create a batch
of 200 queries by mixing 20 instances of each.

Figure 8 shows that the adaptive credit admission (k = 3) substantially improves
resource utilisation in comparison to the KEEPALL policy. The recycle pool needs
35% less memory (Fig. 8a), while the percentage of the reused memory increases
from 51 to to 71 (Fig. 8b).

Figure 9 illustrates the effect of the admission policies on performance. The
ADAPT policy achieves a high hit ratio of 95% in comparison to the hits of the
KEEPALL policy, and an absolute execution time very close to the best one achieved
by the 10-credit admission, followed closely by the KEEPALL admission. The ADAPT
policy avoids the performance degradation of the CREDIT policy with a small num-
ber of credits, and is more resource economical than the CREDIT policy with a high
number of credits.

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

30 . Milena Ivanova et al.

05 05
06k LRU = |
: CRD+LRU 733

g 04r g 04r 05| CRD#BP i -
< < o
g g 3
5 03f § 03r H 04r
o o
<% [s% 2
e 14 Qe / 5 03r
o 02p o 02r J i
2 y 2 V.
s | P
I L I L

01H 40% CL - 01K 40% CL o1k

\ 20% CL i 20% CL ; &
0 a | | | 0 s | | | 0 R\ RN s
0 50 100 150 200 0 50 100 150 200 20% 40% 60% 80%
Query # Query # Recycle pool limit
(a) LRU policy hits (b) Benefit policy hits (c) Relative times to naive

Fig. 10. Eviction policies in limited recycle pool

7.3 Evaluation of Eviction Policies

The eviction policy has a more diverse influence and strongly depends on query
overlaps. The intra-query commonalities are, with a few exceptions, not affected.
The instructions are always put in the pool and reused in the course of the current
query execution, since they are protected from eviction. The LRU policy does not
touch them as they are most recent in the pool. The BENEFIT and HISTORY policies
are designed to exclude them from the list of eviction candidates. The exceptions
arise for complex queries that cannot fit in the pool, thus incurring eviction of
instructions earlier in the plan.

The reuse of inter-query commonalities is strongly influenced by the eviction
policy. If the policy cannot distinguish instructions with potential reuse and throws
them out, this directly leads to a higher number of recycle pool misses and reduced
improvement of performance.

We evaluate the eviction policies using the mixed workload of 200 queries de-
scribed in Section 7.2. Having relatively large overlaps among the queries increases
the contention between instructions, i.e., a situation where a bad choice of the
evicted instruction becomes more noticeable. First, the batch was run with the
KEEPALL/UNLIMITED strategy to measure the total resources needed (4 GB mem-
ory and 5219 RP entries), as well as the percentage of the reused resources (42.7%
reused memory and 28% reused entries). Then we ran the batch using each of the
eviction policies with resources limited to a percentage of the total resources. We
consider two major resources: memory taken by the intermediates, and number of
recycle pool entries which affects the instruction matching time.

Figure 10 shows the effect of the LRU and BENEFIT eviction policies when limiting
the number of recycle pool entries (also called cache lines, CL). The cumulative hits
from the batch execution are shown with respect to the cumulative potential hits.
For limits that fit the reused entries (>40%) the hit ratio is almost not affected.
For the 20% limit the hit ratio drops to 0.3 of the potential hits. Still, both policies
run for less than 45% of the time of the NAIVE strategy (Figure 10c). Although
the BENEFIT policy (BP) shows lower hit ratio than LRU in some cases, it succeeds
better in distinguishing and keeping weighty intermediates in the pool. For all

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

An Architecture for Recycling Intermediates in a Column-store : 31

0.5 05
06 L LR = |
g o4r g 04r 05 [
< <)
s s 3
§ o3f § 03r H 04r
o o
<% Q 2
8 k] g 03r
o 02r o 02r 0
g No limit — g No limit — E oo
z 80% Mem ---- £ 80% Mem ----
U 60% Mem -+ 01/ 60% Mem -+ ol
i 40% Mem -] 40% Mem - :
F 20% Mem i 20% Mem
0 a | | | 0 s | | | 0 o ())
0 50 100 150 200 0 50 100 150 200 20% 40% 60% 80%
Query # Query # Memory limit
(a) LRU policy hits (b) Benefit policy hits (c) Relative times to naive

Fig. 11. Eviction policies in limited memory

limits BP achieves the best performance running for 40% of the total time of the
NAIVE strategy.

The effect of credit admission policy is two-fold. When combined with BP it leads
to a small loss of performance due to some hit misses. The combination of CRD and
LRU improves the LRU, especially when a severe limitation is imposed. The CRD
admission achieves early filtering of instructions that are not reused. It manages to
keep old reused instructions longer in the recycle pool in situations of high resource
contention.

Figure 11 shows the policies behaviour in limited memory. This limitation affects
both the hit ratio and the processing time more substantially than the recycle pool
entries limit. The reason is that some of the beneficial intermediates occupy a lot
of memory and need to be evicted to fit the resource limitation. In this case the
simpler LRU policy or its version in combination with CRD admission prove to be
more efficient.

We also performed experiments with the HISTORY eviction policy. The results
obtained showed a minor variation from the BENEFIT policy and are not presented
here. We expect a more substantial difference between the two versions for changing
workloads.

In general, we observed a relatively small impact of the kind of eviction policy
used. We attribute this to the fact that the eviction policy is applied on instruction
level, as opposed to application to the final result sets as in [Scheuermann et al.
1996]. Furthermore, due to the instruction dependencies, the policy only considers
a relatively small number of leaf instructions. This specific application often leads
to situations where a large new intermediate evicts a set of small leaf instructions,
which is almost identical for different eviction policies.

We expect that the choice of eviction policy has a bigger influence with other
design alternatives (Section 3.4), for instance if only selective intermediates are
admitted to the pool.

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

32 . Milena Ivanova et al.

T T T T T
5000 | KeepAll -~ T n
LRU/2.5GB ---- PR NRA 2000 | KeepAll -~ PR
WRUAGB, — , ., 4 0 1 70 LRU/2.5GB ---- PR R
4000 k- e A U A T T R I R LRUIIGB — PR B R R B
A N A A A O A O A
~ | | . i i
2 A o 1500 | P R N A N AR R VT
P A A z o A A O A T
g [R R N PR e A /4\”\‘"‘, i i
R B A e T L T e T Re e S P o] ! [P i -
< AT IT IS A S B A S A i £ 1000 AR ¥]
2000 1 I A S A T i i 5 4 ' L
o o { IR A H P i "
4 [I S A I S A B S O i
A ol I N T R A !
i IR 1 IR i i 14
1000 -] i i
0 = -
11 35 59 83 107 131 155 179 203 227 11 35 59 83 107 131 155 179 203 227
Query # Query #
(a) RP memory (b) RP entries
Fig. 12. Recycling in presence of updates, K=20
. , 1000 : : T
1400 |- KeepAll - -
LRU/2.5GB ===~ KeepAll - -
1200 - LRU/1GB — 800 | plieeRl T R
. LRU/1GB — W
@ 1000 |- N
§ 4
S 800 £
e | :
g i £
S 600 - i 2
o | &
4 o
400 |- !1 ;
i
200 |
\ i)
0
0 50

Query #

(a) RP memory (b) RP entries

Fig. 13. Recycling in presence of updates, K=1

7.4 Evaluation of Recycling with Updates

To study the behaviour of recycling in a volatile environment, we modify the query
batch of Section 7.2 by injecting update statements with different frequencies. The
updates are generated based on the specification of the TPC-H refresh functions.
Each block of updates inserts a set of new customer orders, which effectively adds
7-8 rows into ORDERS and 25-56 rows into LINEITEM tables. Similarly, it deletes a
set of old orders from both tables. One update block is put in the middle of each
block of K queries, for K = 1,10, 20, and 50.

We study recycling with immediate invalidation of the intermediates affected by
the updates. We evaluate both unlimited recycling, where the total size of the pool
grows to almost 5 GB, and recycling with LRU eviction policy and a pool of size
of 2.5 and 1 GB, respectively.

Figure 12 illustrates the change of the recycle pool memory(a) and number of
entries(b) as the query batch for K = 20 (e.g., with 10 update blocks) executes.
The labels on the X-axis denote the first statement in each update block. In all
strategies we observe invalidation of a large part of the recycle pool during the
update blocks. The invalidation affects the intermediates derived from ORDERS
and LINEITEM tables. Note that since some queries, such as TPC-H 11 and 16, do
not touch the updated tables, their intermediates are not affected by the invalida-

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

An Architecture for Recycling Intermediates in a Column-store : 33

tion. The strategies with limited memory also evict some instructions during the
query execution in order to fit the recycle pool size limitation. Hence the update
invalidation affects a smaller part of the recycle pool content.

Figure 13 illustrates a situation with a highly volatile database where each query
is followed by a block of four update statements (K=1). We observe continuous
alternation of the recycle pool content where the intermediates added by a query
are immediately thrown out by the subsequent update block.

Each time we clean the recycle pool, its contribution to improved performance in
subsequent queries drops significantly. As such, the system falls back to the perfor-
mance of vanilla MonetDB, i.e., without the recycler. The overhead of managing
the recycle pool itself is negligible compared to the instructions being executed.

8. SKYSERVER EVALUATION

In this section we demonstrate the recycler in the context of the SkyServer project
[SkyServer 2008]. SkyServer is a sizable 4 TB scientific database with 91 tables, 51
views, and 203 persistent module functions. The SkyServer database is publicly
available, but its size and complexity is sufficiently complex that the MonetDB
implementation is the sole known complete alternative implementation. For our
experiments we extracted a smaller version from both the database and the query
log. The test database deployed in the experiments is a 100 GB subset of SkyServer
Data Release 4 (DR4).

The times reported are again measured in an experimental environment prepared
with warming-up queries and emptied recycle pool.

8.1 Workload Characteristics

We prepare two query batches of 100 and 500 queries against DR4 randomly picked
from the real life query log from January 2008. A manual inspection of the random
set confirms the observations reported in [Ivanova et al. 2007] of a high percentage of
(partially) overlapping queries. The batches contain a small number of patterns over
a limited part of the database schema. This is typical for web-based applications
where a few tens of query patterns are used with different parameters.

To make the discussion concrete, we illustrate with the most common query
pattern (>60 %) in both batches:

SELECT p.objID, p.run, p.rerun, p.camcol, p.field, p.obj,
FROM fGetNearbyObjEq(195,2.5,0.5) n, PhotoPrimary p
WHERE n.objID = p.objID

LIMIT 1;

The query accesses the catalogue table with photometric properties of sky objects
through the view PHOTOPRIMARY. The object filtering is based on sky location.
The table-valued spatial function FGETNEARBYOBJEQ extracts the objects in a
circular area specified by the equatorial coordinates and size parameters. A set of
19 popular properties of the objects are projected.

The execution plan computes the spatial function and the view, joins them, and
performs projection joins to extract the properties. The instances of the query
are almost identical: there are two different, but overlapping, sets of parameter
values of the spatial search function. Furthermore, there is a difference in the

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

34 . Milena Ivanova et al.

Instruction | # Cache | Memory | Avg. time # Reused | # Reuses Avg. time
type lines (MB) (ms) || Cache lines saved (ms)
Select 29 148 126 22 317 166
Join 78 1221 118 37 1585 249
Bind 44 0 1 34 1836 1
MarkT 33 0 1 24 439 1
Total 258 1500 | 170 5711

Table III. Characteristics of recycle pool after DR4 query batch

projected columns, where a value is a function of the name of the server where the
original query was executed. As a result, the recycler reuses the majority of the
intermediates of this query template.

Approximately 36 % of the queries retrieve information from the self-descriptive
documentation tables of the SkyServer web site. Those tables are relatively small
and the queries over them are very fast. Finally, a small percentage (appr. 2%) of
the batch are point queries retrieving all attributes of an object given its unique
ID, e.g.:

SELECT * FROM ELRedshift WHERE specObjId=0x0559cf6177c00000;

When the 100-query batch runs with the KEEPALL admission and unlimited stor-
age, the recycler monitors the execution of 5969 relational algebra instructions,
constituting approximately 15% of all instructions being executed. 5711, or 95.6%
of these monitored instructions are successfully reused.

Table III breaks down the content of the recycle pool at the end of the batched
execution. The total storage overhead is 1.5 GB which is approximately 50% of
the 2.9 GB taken by the columns queried, or less than 2% of the total database
size. Except for several intermediates of size smaller than 1 KB each, all memory
taken by intermediates is reused. The join intermediates are the major consumers
of memory, but also contribute most substantially to the time savings. They have
both a high number of reuses and significant saved time per reuse. We also observe a
larger percentage of reused selections than reused joins, since selections are typically
predecessors of joins in the execution threads.

8.2 Workload Performance

Figure 14 illustrates the total time for the 100 query batch with and without recycler
intervention. The NAIVE strategy denotes regular execution without recycling. We
run two recycler versions: one with KEEPALL admission and unlimited storage and
one in a resource limited mode, i.e., with CRD/LRU policies and memory limited to
1 GB, constituting 65% of the memory taken by the unlimited version.

The SkyServer is a read only database. Nevertheless, to assess the impact of
updates against it, we split the 100 query batch into shorter sequences of 25 and
50 queries and run them with cleaning the RP in between.

The effect of the recycler KEEPALL/UNLIMITED on the response time is significant:
it dropped from 785 sec to 14 sec for the 1x100 batch. Since the percentage of
reused memory is very high for this workload, any shortage substantially affects the

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

An Architecture for Recycling Intermediates in a Column-store : 35

1000

=
o
o
T
1

Time (sec)

4x25 2x50 1x100
mm Naive CRD/1GB KeepAll/Unlim

Fig. 14. Recycler effect on SkyServer query batch

performance. Still, the total time of CRD/LRU/1GB is 296 sec, or approximately
38% of the naive strategy time.

The batches of 4x25 and 2x50 queries show similar performance with a small
overhead due to the loss of intermediates from the previous batch that have to be
computed again. To verify the results we scale the experiment to 500 randomly
selected queries. The times measured confirm the observations from the shorter
batches: the NAIVE strategy runs for 4057sec, the KEEPALL/UNLIMITED achieves
17sec, and the CRD/LRU/1GB strategy takes 1433sec, i.e., approximately 35% of
the NAIVE strategy time.

Detailed analysis of the recycled instructions shows that the recycler detects
and effectively materialises the queried projection over the PHOTOPRIMARY view
without human intervention. The original database schema on the SQL Server
implementation might have benefited from materialising this view or using some
index structure. Whether a workload analyser would have detected it remains to
be seen.

8.3 Evaluation of Combined Subsumption

We use the SkyServer application to prepare micro-benchmarks for evaluation of the
combined subsumption feature of the recycler. The experiments run against a 75GB
database of 10 million sky objects. We picked a common query pattern from the
query log that performs spatial search of sky objects using their right ascension and
declination coordinates, both attributes being floating point numbers. To generate
the benchmarks we instantiate the query pattern with different parameter values
that ensure combined subsumption. Starting with a seed query with selectivity
factor s over the right ascension attribute we generate a sequence of k queries that
together allow the seed query to be answered by a combined subsumption. The
selectivity factor of the covering queries depends on the parameter k£ and was set
to s(k) = 1.5 s/(k — 1) to provide overlap among the queries and full coverage of
the seed query.

The micro-benchmark B2 of 60 queries is generated from 20 seed queries and
parameter k = 2, i.e., each seed query can be answered by subsumption from at

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

36 . Milena Ivanova et al.

25
°) L i
g g ?
o o 15 q
£ E
= s 1t B
T]
g g o05h
0 5 10 15 20 25 30 35 40 45 50 55 60
2 2
g g
o oy
£ E
ko] T
2] n
03 03
% N . % B
E o2} . e £ o2t B
g P T R
£ SR . £ . R
= 01p Loaaa St e B = o0a1f Lt - 4
o =y a -
< a 4 4 <
LY P IV VRV 0 Liaasiasss s anasianan janas o aana anns snnn janan; an]
0 6 12 18 24 30 36 42 48 54 60 0 5 10 15 20 25 30 35 40 45 50 55 60
Query # Query #
(a) Benchmark B2 (b) Benchmark B4

Fig. 15. Performance of combined subsumption algorithm

least one combination of two queries. The micro-benchmark B4 is similarly created
by setting & = 4 and using 12 seed queries. The selectivity factor s in the seed
queries was in both cases set to s = 2%, or approximately 200K sky objects.

Figure 15 shows the performance figures of both micro-benchmarks. The upper-
most diagram presents the ratio of total times of subsumed execution towards
regular execution without recycling. The ratio is noticeably smaller than 1 for
the majority of the seed queries (every 3rd one in B2 and every 5th one in B4)
where the combined subsumption applies. Of course, when running the experiments
in a complete system we also observe outliers when other factors influence the total
execution time.

To isolate the effect of the execution environment we zoom into the execution
times of the selection operator over the right ascension attribute. The middle dia-
gram shows the ratio of the selection times with and without combined subsump-
tion. We clearly can observe the time savings due to the combined subsumption in
the seed queries. The average subsumed selection runs in about 20% of the time of
the regular selection. It confirms a proper implementation of the algorithms in our
framework.

The bottom diagram presents the absolute time in milliseconds spent in the
combined subsumption algorithm. The time increases with the size of the cache
and the number k of the covering queries. We measured maximal time of 0.25ms
per invocation for k£ = 4 and cache of 800 instructions and 0.4ms for k£ = 9, which
indicates good scalability. For expensive operators of hundreds of milliseconds the
algorithm overhead is negligible.

The experiments with batches with other selectivity s and parameter k showed
similar results and are not presented here.

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

An Architecture for Recycling Intermediates in a Column-store : 37

9. RELATED WORK

Recycling exploits the generic idea of storing and reusing the results of expensive
computations. While traditional cache replacement policies focus on maximising
the cache hit ratio, maintenance of caches of database query results have to also
consider the items’ different sizes and computational costs. Furthermore, recycling
differs from file-caches in operating systems and page-caches in database system by
exploitation of the operator semantics and their dependencies. We use an optimiser
to pre-select instructions to look after. Likewise, the eviction policies respect the
semantic dependencies amongst operators in the query plan, thus maintaining an
operator cache with lineage.

Recycling (partial) results is also the driver behind materialised views and query
caching [Agrawal et al. 2000; Chen and Roussopoulos 1994; Goldstein and Lar-
son 2001; Mistry et al. 2001; Scheuermann et al. 1996; Tan et al. 2001; Zhou
et al. 2007a]. Our approach differs from this large body of work in some or all of
the following three aspects: self-organising behaviour without human intervention,
integration with the DBMS software stack, and granularity of operation. The ma-
terialised views are often defined by the DBA with the help of workload analysers
to improve system performance [Agrawal et al. 2000; Mistry et al. 2001]. The dy-
namic materialised views proposed in [Zhou et al. 2007a] materialise hot subsets
that adapt to the current workload by means of additional control tables. The
content of the control tables is updated manually by the DBA or automatically by
a cache controller. The definition of the views and associated control tables is again
a responsibility of the DBA.

Traditionally, view or intermediate matching is integrated with query optimiza-
tion [Chen and Roussopoulos 1994; Goldstein and Larson 2001; Tan et al. 2001]. Of-
ten this involves applying advanced algorithms over graph representations of query
plans. Recycling does not modify query plans based on the intermediates available.
Instead, it matches instructions one-at-a-time at run time. Hence, matching inter-
mediates is interleaved with query execution. This is possible due to the abstract
representation of query plans and MonetDB’s execution paradigm. In the Cache-
on-Demand framework [Tan et al. 2001] recycling of intermediates is ensured by
considering only the present. An overlap in an incoming query with the currently
running queries triggers materialising common intermediates. This approach is ben-
eficial in a multi-user scenario setting, but imposes temporal locality limitations on
the overlapping queries.

Finally, recycling is a general technique that works at a finer level of granularity
than materialised views and query caches. It keeps individual instruction results
independently from the source of commonalities and the type of the entire query.
DynaMat [Kotidis and Roussopoulos 2001] proposes dynamic management of a pool
of materialised views in data warehouses. Similar to the recycling policies, so called
goodness metrics are employed to automatically decide which views to keep and
which to evict from the pool. In this way the system adapts the pool content for
maximal benefit to the current workload. Working in the context of data warehouse
and decision support applications, DynaMat considers specific types of data cube
queries, called multidimensional range queries, whose final results are put in the
pool. A similar line of research is pursued in [Choi et al. 2003; Luo and Yu 2008].

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

38 . Milena Ivanova et al.

In contrast, recycling considers intermediate results at the instruction level and it
is a general technique that does not impose limitations on the query types.

[Scheuermann et al. 1996] proposed cache replacement and admission algorithms
for retrieved query sets based on a profit metric that incorporates the reference
rate, cost and size of the result set. The benefit policy in the recycler is similar to
their profit metric with the following differences: we consider the total number of
references, as opposed to the reference rate of the last-K references that incorporates
ageing of sets. The algorithms are applied to independent query sets, while we
need to take into account instruction dependencies, namely the eviction algorithm
is applied only over leaf instructions.

Caching and reusing intermediates in the context of a pipeline execution engine
is proposed in [Rao and Ross 1998]. The invariant parts of correlated subqueries
are automatically recognised and the evaluation plan is restructured to keep and
reuse the intermediate results. The application of this approach is limited to parts
of correlated subqueries. Hence, the work does not tackle issues such as sharing
and matching of intermediates among different queries and maintaining a common
cache of intermediates.

Database caching [Bornhovd et al. 2004; Larson et al. 2004] is typically used
in distributed settings to augment the mid-tier application servers and to off-load
the back-end database servers. The cache content is a DBA-defined collection of
materialised views and thus is static with respect to the covered database sub-
schema.

Our approach to share computations between queries also relates to multi-query
optimization [Roy et al. 2000] and exploitation of similar sub-expressions [Zhou
et al. 2007b]. Both techniques are applicable to queries that are known in advance
and executed concurrently, such as query batches, sub-queries, and maintenance
of materialised views. In contrast, the recycler alters the execution of individual
queries to maximally benefit from intermediates currently available in the pool and,
hence, is applicable to individual ad-hoc queries without a-priory knowledge about
the workload.

The adaptive replication technique presented in [Ivanova et al. 2008] exploits the
materialisation of selection intermediates to reorganise a persistent table column
into a partial replica tree. Recycling is a general technique that manages the in-
termediates of different classes of relational operators which does not change the
underlying column structures.

This manuscript extends the work presented in [Ivanova et al. 2009] in two major
directions: enhanced predicate subsumption and recycling in volatile databases.
The subsumption technique initially based only on a single intermediate result, has
been enhanced to consider combinations of intermediates. The combined subsump-
tion algorithm has been fully implemented in the code base and evaluated in the
context of micro-benchmarks derived from the SkyServer application. Originally
the recycling technique was developed, and showed to be efficient, for prevailing
read-only workloads. In this work we discuss the problems of recycling in the
presence of updates, describe the landscape of possible solutions, and evaluate an
implementation based on immediate invalidation of cached intermediates affected
by the updates. Finally, the detailed analysis of the initial admission policies led to

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

An Architecture for Recycling Intermediates in a Column-store : 39

introduction of the adaptive credit admission policy that provides better utilisation
of the recycle pool resources with a minimal loss of performance.

10. SUMMARY AND CONCLUSIONS

In this paper we have described a database architecture augmented with recycling
intermediates from relational algebra programs, i.e., caching partial results. The
approach is implemented as an extension to the MonetDB system, which differs
from the main-stream database engines in its use of an operator-at-a-time exe-
cution paradigm. Our approach addresses the potential overhead incurred by this
execution paradigm, which can lead to sizable intermediates being produced. These
intermediates are used as a kind of dynamically materialised views described by re-
lational algebra plan snippets, which turn them into a benefit without requiring
(manual) DBA intervention or an a-priory workload analysis.

Unlike traditional file system caches, the recycler policies respect the inter-
operator dependencies, which leads to a much more effective reuse of long instruc-
tion sequences in template based query sessions, e.g., web applications. The recy-
cling policies studied cover both an extension to the basic LRU scheme for relational
operations and ones driven by an economic cost principle. Extensive experimen-
tation based on a full-fledged implementation shows that the MonetDB software
architecture is well suited to be extended with such a targeted optimization goal.

The validity of the approach is demonstrated using the SkyServer real-life query
log. Even in this well-designed application, recycling partial results can lead to
significant gains. Primarily, because it can adapt more easily to the re-use of
expensive query plan parts.

The results obtained indicate several areas for further exploration. Within the
context of operator-at-a-time execution, e.g. MonetDB, it seems worth exploring
subsumption relationships through join paths and opportunities offered by applica-
tion specific query classes. Another direction of work is to investigate other design
alternatives based on the top-down or optimistic instruction matching and develop
admission and eviction policies suitable for them.

But first, and foremost, the technique seems amenable to pipelined architectures
by tapping the stream at selected points in the query operator tree. To our knowl-
edge, publicly available experimental proof is still lacking, but activities in the
commercial setting are emerging [VectorWise 2010].

ACKNOWLEDGMENTS

The authors would like to thank the members of the MonetDB database group,
in particular Sjoerd Mullender, Stratos Idreos, and Stefan Manegold. We are also
grateful to the SkyServer team for providing the data. This work was supported
by the Dutch Bsik-Bricks and MultimediaN research programs.

REFERENCES

AGRAWAL, S., CHAUDHURI, S., AND NARASAYYA, V. R. 2000. Automated Selection of Materialized
Views and Indexes in SQL Databases. In VLDB. 496-505.

BLAKELEY, J. A., LARSON, P.-A., AND Tompa, F. W. 1986. Efficiently Updating Materialized
Views. In SIGMOD Conference. 61-71.

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

40 . Milena Ivanova et al.

Boncz, P. A., KERSTEN, M. L., AND MANEGOLD, S. 2008. Breaking the Memory Wall in MonetDB.
Commun. ACM 51, 12.

BORNHOVD, C., ALTINEL, M., MoHAN, C., PIRAHESH, H., AND REINWALD, B. 2004. Adaptive
Database Caching with DBCache. IEEE Data Eng. Bull. 27, 2, 11-18.

BRUNO, N. AND CHAUDHURI, S. 2007. Physical Design Refinement: The ’Merge-Reduce’ Approach.
ACM Trans. Database Syst. 32, 4.

CHEN, C.-M. AND RoussopouLOS, N. 1994. The Implementation and Performance Evaluation
of the ADMS Query Optimizer: Integrating Query Result Caching and Matching. In EDBT.
323-336.

Cuoi, C.-H., Yu, J. X., AND Lu, H. 2003. Dynamic Materialized View Management Based on
Predicates. In APWeb. 583-594.

CORNACCHIA, R., HEMAN, S., ZUKOWSKI, M., DE VRIES, A. P., AND BoNcz, P. A. 2008. Flexible
and Efficient IR Using Array Databases. VLDB J. 17, 1, 151-168.

GOLDSTEIN, J. AND LARSON, P.-A. 2001. Optimizing Queries Using Materialized Views: A Prac-
tical, Scalable Solution. In SIGMOD Conference. 331-342.

GRAEFE, G. 1994. Volcano - An Extensible and Parallel Query Evaluation System. IEEE Trans.
Knowl. Data Eng. 6, 1, 120-135.

GRIFFIN, T. AND LIBKIN, L. 1995. Incremental Maintenance of Views with Duplicates. In SIGMOD
Conference. 328-339.

IvaNova, M., KERSTEN, M. L., AND NES, N. 2008. Self-organizing Strategies for a Column-store
Database. In Proc. EDBT. 157-168.

IvaNova, M., KErRSTEN, M. L., NEs, N. J., AND GONGALVES, R. 2009. An Architecture for
Recycling Intermediates in a Column-store. In SIGMOD Conference. 309-320.

IvaNova, M., NEs, N., GONGALVES, R., AND KERSTEN, M. L. 2007. MonetDB/SQL Meets Sky-
Server: the Challenges of a Scientific Database. In Proc. SSDBM. Banft, Canada.

Koripis, Y. AND RoussorouLos, N. 2001. A Case for Dynamic View Management. ACM Trans.
Database Syst. 26, 4, 388-423.

LARSON, P.-A., GOLDSTEIN, J., AND ZHOU, J. 2004. MTCache: Transparent Mid-Tier Database
Caching in SQL Server. In ICDE. 177-189.

Luo, G. 2007. Partial Materialized Views. In ICDE. 756-765.

Luo, G. AND Yu, P. S. 2008. Content-based Filtering for Efficient Online Materialized View
Maintenance. In CIKM. 163-172.

MARTELLO, S. AND TOTH, P. 1990. Knapsack Problems: Algorithms and Computer Implementa-
tions. John Wiley & sons, England.

MisTry, H., ROy, P., SUDARSHAN, S., AND RAMAMRITHAM, K. 2001. Materialized View Selection
and Maintenance Using Multi-Query Optimization. In SIGMOD Conference. 307-318.

MonetDB 2010. http://monetdb.cwi.nl/.

PHAN, T. AND L1, W.-S. 2008. Dynamic Materialization of Query Views for Data Warehouse
Workloads. In ICDE. 436-445.

RAo, J. AND Ross, K. A. 1998. Reusing Invariants: a New Strategy for Correlated Queries.
SIGMOD Conference, 37-48.

Ross, K. A., SRIVASTAVA, D., AND SUDARSHAN, S. 1996. Materialized View Maintenance and
Integrity Constraint Checking: Trading Space for Time. In SIGMOD Conference. 447—-458.
RoyY, P., SESHADRI, S., SUDARSHAN, S., AND BHOBE, S. 2000. Efficient and Extensible Algorithms

for Multi Query Optimization. In SIGMOD Conference. 249-260.

SCHEUERMANN, P., SHiM, J., AND VINGRALEK, R. 1996. WATCHMAN : A Data Warehouse
Intelligent Cache Manager. In VLDB. 51-62.

SkyServer 2008. Sloan Digital Sky Survey / SkyServer, http://cas.sdss.org/.

SzZALAY, A. S., GRAY, J., ET AL. 2002. The SDSS SkyServer: Public Access to the Sloan Digital
Sky Server Data. In SIGMOD. 570-581.

TaN, K.-L., Gon, S.-T., AND Ool, B. C. 2001. Cache-on-Demand: Recycling with Certainty. In
ICDE. 633-640.

TRANSACTION PROCESSING PERFORMANCE COUNCIL. 2008. TPC Benchmark H, Revision 2.6.2.

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

An Architecture for Recycling Intermediates in a Column-store : 41

VectorWise 2010. http://www.vectorwise.com/.
ZHOoU, J., LARSON, P.-A., ET AL. 2007a. Dynamic Materialized Views. In ICDE. 526-535.

Zuou, J., LARSON, P.-A., ET AL. 2007b. Efficient Exploitation of Similar Subexpressions for
Query Processing. In SIGMOD Conference. 533-544.

ZUKOWSKI, M., HEMAN, S., NES, N., AND BoNcCZ, P. 2006. Super-Scalar RAM-CPU Cache Com-
pression. In Proc. ICDE. Atlanta, GA, USA.

Received October 2009; revised May 2010; accepted July 2010

ACM Transactions on Database Systems, Vol. V, No. N, Month 2010.

